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Highly diastereroselective synthesis of dihydrofurans and dihydropyrroles

via pyridine catalyzed formal [4+1] annulationw
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A pyridine-catalyzed ylide cyclization affording dihydrofurans

and dihydropyrroles has been developed. In the presence of a

catalytic amount of pyridine and Fe(Tcpp)Cl, a-ylidene-b-
diketones and a,b-unsaturated imines react with diazoacetates

providing dihydrofurans and dihydropyrroles respectively, in up

to 96% yield with high diastereoselectivities.

Ylides can be regarded as a special cabanion with a leaving

group,1 which have proved to be good reagents for the

synthesis of five-membered ring systems,2 which are frequently

encountered in biologically active compounds and are also

useful as synthetic intermediates.3,4 For example, several

groups reported independently that a-ylidene-b-diketones
could either react with a nitrogen ylide or a sulfur ylide giving

2,3-dihydrofurans.2a,c–e,g–i Unfortunately, In these reactions, a

stoichiometric amount of ylide is required and the catalytic

version of this transformation has not been reported. In this

work it has been found that 1 mol% of pyridine can catalyze

the reaction between a-ylidene-b-diketones and an alkyl diazo-

acetate smoothly in the presence of catalytic tetra(p-chloro-

phenyl)porphyrin iron chloride (Fe(Tcpp)Cl). Further studies

showed that this method could be extended to the synthesis of

dihydropyrroles by employing a,b-unsaturated imines instead

of a-ylidene-b-diketones under similar reaction conditions. In

this communication we report the preliminary results.

Iron carbenoids, readily available from alkyl diazo acetate,

prove to be good reagents for the preparation of sulfur ylides

under neutral conditions by its reaction with sulfide.5 It was

pleasing to find that the reaction of a-ylidene-b-diketone 1a

with ethyl diazoacetate, in the presence of 2 mol% of Fe(Tcpp)Cl

and 20 mol% of dimethyl sulfide, proceeded smoothly affording

to the desired dihydrofuran (entry 1, Table 1). As shown in

Table 1, further study showed that 20 mol% of tetra-

hydrothiophene (THT) worked well (entry 2, Table 1). When

diisobutyltelluride was used instead of dimethyl sulfide, the

reaction did not work at all. Pyridine proved to be a good

catalyst for such transformation (entry 4, Table 1) and DABCO

gave only 50% conversion (entry 5, Table 1). Cinchonine,

tridentate 2,6-bis(oxazolinyl)-pyridine ((S)-iPr-Pybox), quinine,

and isoquinoline were inert to this reaction (entries 6–9,

Table 1). A control experiment showed that no ylide cyclization

occurred in the absence of a catalyst (entry 10, Table 1).

Since pyridine is cheap and 99% conversion could be

obtained when 20 mol% of pyridine was employed

(entry 4, Table 1), the effect of pyridine loading on the cycli-

zation was next investigated using 1a as a model substrate. As

summarized in Table 2, when 1 mol% of Fe(Tcpp)Cl was

employed, the loading of pyridine could be reduced from

20 mol% to 6 mol% and the conversion was still quanti-

tative (entry 4, Table 2). Further reduction of the amount of

pyridine led to low conversion under the same conditions

(entries 5–6, Table 2).6

Under optimal conditions, the generality of this reac-

tion was investigated using a variety of a-ylidene-b-diketone
substrates. As shown in Table 3, various a-ylidene-b-diketones
are good substrates for such a transformation to give dihydro-

furans and no cyclopropanes are observed. For example,

aromatic substrates with an electron-withdrawing group

(entries 1, 2, 6, 7, 9, Table 3) as well as an electron-donating

group (entries 3, 4, Table 3) all worked well to give the desired

products in high yields with high diastereoselectivities (yield

>85%, dr >50 : 1). 85% yield with excellent diastereoselectivity

was obtained when 3-(furan-2-ylmethylene)pentane-2,4-dione

was employed (entry 8, Table 3). Aliphatic-substituted diketones

such as 3-pentylidenepentane-2,4-dione also gave high yields of

cyclized products (entry 10, Table 3). Thus, this method provides

an easy route to tetrasubstituted dihydrofurans under neutral

conditions via a catalytic nitrogen-ylide process.

Diazoacetophenone was also tested and the desired dihydro-

furan was isolated in 92% yield with high diastereoselectivity

(eqn (1)). It is noteworthy that, under optimal conditions,

loading of pyridine could be reduced to 1 mol% when the

reaction was scaled up to 1.0 mmol and the concentration of

1a was increased to 1.0 M. In this case, both the yield and

diastereoselectivity were still high (eqn (2)).
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ð2Þ

A possible mechanism for this formal [4+1] annulation is

proposed as shown in Scheme 1. Fe(Tcpp)Cl decomposes

EDA to give an iron carbenoid A, which reacts with pyridine

to generate a pyridinium ylide B. B undergoes a Michael

addition, followed by intramolecular cyclization to give dihydro-

furans. A clear mechanism awaits further investigation.

This strategy could also be extended to the synthesis of

dihydropyrroles. Using 20 mol% of pyridine as the catalyst,

the reaction of imine 6a with tert-butyl diazoacetate worked to

give dihydropyrrole 7a in 60% conversion (entry 1 in Table 4).

Further optimization showed that 4-methylpyridine is more

efficient than pyridine. As shown in Table 4, under optimal

conditions, a,b-unsaturated imines reacted with tert-butyl

diazoacetate (BDA) smoothly, affording dihydropyrroles with

high diastereoselectivities in the presence of 5 mol% of

4-methylpyridine and 0.5 mol% of Fe(Tcpp)Cl. Aromatic

substrates bearing an electron-withdrawing group (entries 3,5)

and an electron-donating group (entry 4) all gave the corres-

ponding dihydropyrroles in high yields (>82%) with dr> 50 : 1.

Aliphatic imines are not suitable for such transformation and no

desired products were observed.

In conclusion, we developed a catalytic formal [4+1] annula-

tion via a nitrogen ylide route, providing an easy route to

dihydrofurans and dihydropyrroles in good to excellent yields

with high diastereoselectivities. The loading of the catalyst

pyridine could be reduced to 1 mol%. The high chemo-

selectivity, high diastereoselectivity, the easily accessible starting

material and the low amount of pyridine used in this reaction

make this reaction potentially useful in organic synthesis.

Table 1 Effects of heteroatom compounds as catalysts for the ylide cyclizationa

Entry Cat. (20 mol%) Conv.b (%) Entry Cat. (20 mol%) Conv.b (%)

1 Dimethylsulfide >99 6 Cinchonine 0
2 THT 90 7 (S)-iPr-Pybox 0
3 Diisobutyltelluride 0 8 Quinine 0
4 Pyridine >99 9 Isoquinoline 0
5 DABCO 50 10 — 0

a 1a (45 mg, 0.2 mmol), Fe(Tcpp)Cl (4 mg, 4 mmol), 2a (46 mg, 0.4 mmol), toluene (2.0 mL), 40 1C. b Determined by 1H NMR and relative

stereochemistry for 3a.

Table 2 The effect of pyridine loading on cyclizationa

Entry Fe(Tcpp)Cl (mol%) Pyridine (mol%) Time/h Conv.b (%)

1 2 20 5 >99
2 2 10 8 >99
3 2 6 8 80
4 1 6 8 >99
5 1 2 8 20
6 0.5 2 8 20

a
1a (45 mg, 0.2 mmol), 2a (46.0 mg, 0.4 mmol), toluene (2.0 mL),

40 1C. b Determined by 1H NMR.

Table 3 Reaction of EDA with a-ylidene-b-diketonesa

Entry R Yield (%)b Drc

1 4-Cl–C6H4– (1a) 96 >50 : 1
2 4-Br–C6H4– (1b) 94 >50 : 1
3 4-Me–C6H4– (1c) 88 >50 : 1
4 4-OMe–C6H4– (1d) 85 >50 : 1
5 Ph (1e) 94 >50 : 1
6 4-NO2–C6H4– (1f) 95 >50 : 1
7 2-Br–C6H4– (1g) 95 >50 : 1
8d 2-furanyl (1h) 85 >50 : 1
9 4-CF3–C6H4– (1i) 92 >50 : 1
10e n-C3H7– (1j) 85 >50 : 1

a Fe(Tcpp)Cl (2.0 mg, 2 mmol), 1 (0.2 mmol), 2a (45.6 mg, 0.4 mmol),

pyridine (1.0 mL, 0.012 mmol), toluene (2.0 mL), 40 1C. b Isolated

yield. c Determined by 1H NMR and relative stereochemistry for

3. d Fe(Tcpp)Cl (2.0 mg, 2 mmol), 1h (178 mg, 1.0 mmol), 2a

(228 mg, 2.0 mmol), pyridine (8.0 mL, 0.10 mmol), toluene (2.0 mL),

40 1C. e Fe(Tcpp)Cl (2.0 mg, 2 mmol), 1j (154 mg, 1.0 mmol), 2a

(228 mg, 2.0 mmol), pyridine (4.0 mL, 0.05 mmol), toluene (2.0 mL), 40 1C.

Scheme 1 Possible mechanism of this annulation.
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